Reimagining Bus Routes with Q-Learning
and an Equity Based Reward Model

Justin Tinker
Computer Science
Stanford University

Stanford, CA

jatinker @cs.stanford.edu

Abstract—Public transit is an essential service provided by
the government that has wide-reaching social and economic
impacts. For those who do not have reliable access to a
vehicle, public transit is often the sole method by which
to access essential services such as grocery stores, schools,
hospitals, and other opportunities. This group of people are
often referred to as ‘dependent riders’. As of now, many
bus routes are implemented in a way that perpetuates socio-
economic, geographic, and racial inequities, and optimize
for factors such as aggregate ridership rather than equitable
access for everyone. This project explores how to integrate
equity based metrics into bus route planning, and applies
this method to improve existing bus routes in major cities in
the United States, including San Francisco and Cleveland.

I. INTRODUCTION

Bus Network Design and Frequency Setting (BNDFS)
is well observed as a sequential decision making process
in urban planning literature [2]]. Multiple approaches
have been considered. A common framework involves
ingesting a list of bus stops and passenger counts, then
choosing which buses will connect which stops (routing)
and how many buses to run along each route (frequency).
Selecting one stop affects how we select subsequent
stops, making this sequential. Numerous reward functions
are also studied in the literature. While the classical
minimization of aggregate travel time still dominates,
new research is exploring more equity based objectives
[2]]. Current bus routes tend to be concentrated in densely
populated urban regions, making it difficult for people
from more remote, far-off areas to use the bus to access
essential services. On top of this, bus routes are often
designed in a way that results in large ‘dead zones’
where a lack of coverage makes it difficult to get to
one’s desired destination. In addition, bus routes do
not prioritize ‘dependent riders’ over ‘choice riders’,
meaning that those who rely on buses often have ironically
longer commutes than their more privileged counterparts,
who have access to alternate modes of transportation
to reach their destination. Taking these factors into
consideration, using publicly available data from bus
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routes in major cities, including San Francisco, New
Orleans, and Miami, we model the problem of route
planning as a sequential decision-making problem and
apply Q-learning to optimize bus routes not only to
minimize travel time, but to maximize equity.

II. METHODS
A. Modeling

We explored two Q-Learning methods for optimizing
bus routes in this paper:

1. In-place Modification uses Q-learning to identify small
route modifications (i.e. adding a stop, changing route
frequencies) to improve the overall bus route network.

2. Route Creation uses Q-learning to develop new routes
that share the same origin and final destinations as
the existing routes, driven by an equity-based reward
function.

We begin with a simplified representation of the
existing bus network. A bus network is represented by
SiX components:

1) R, the list of routes in the network.

2) S, the list of stops in the network.

3) A mapping from each bus route r to an ordered
list of stops s visited by r.

4) A mapping from each bus stop s to an unordered
set of routes r that visit s

5) A mapping from each bus route r to a frequency f,
where f is equal to the minimum interval between
buses running along r.

6) A graph G where two stops s, and s, are connected
by a directed edge e if there exists any route in R
that travels directly from s, to s

Each bus network is loaded from publicly available
GTFS (Google Transit Feed Specification) data and
converted into the representation described above (for an



example, see Fig. 2).
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Fig. 2. Cleveland Bus Network

For each stop, we add features from Census (ACS
2021) and Open Street Maps (OSM) data. A stop is
defined to be near a point of interest (POI) if it is within
200 meters of the location coordinates in OSM. A stop
is defined to be in a bus dependent area if

1) At least 40% of units in the census block group
are rentor-occupied
2) Less than 50% of households own a car
3) At least 20% of households are within 200% of
the federal poverty line
(for an example, see Fig. 1). Table 1 shows an example
table of stop features.

TABLE I
SAMPLE STOPS DATA

Stop ID Stop Name Lat Lng
04759 FULTON RD / BUSH AV~ 4147706  -81.708561
06263 MILES AV / E 123RD ST  41.445392  -81.596544

Stop ID  Near Grocery % Rented
04759 True 1.0
06263 False 0.2

B. Method 1: In-place Modification

We define 7 benchmarks to evaluate a bus network.
Each benchmark represents an individual traveling from
an origin stop to either a single destination stop or
any of a list of destination stops. The fastest route is
simulated using a multisource Dijkstra’s algorithm with
the following parameters:

1) Penalty for transferring between buses: 5 minutes

2) Wait time per stop: 30 seconds

3) Driving time: Manhattan distance between stops
divided by 30 miles per hr

4) If transfer between buses is required, the wait time
equal to the frequency of the required bus route is
added

The network’s score is the average time it takes to
complete each of the following benchmarks:

Randomly chosen bus-dependent stop to (1) any hospital,
(2) any park, (3) any bar, (4) any place of worship, (5)
a randomly chosen Starbucks, (6) a randomly chosen
McDonalds, and (7) a randomly chosen bar.

Notably, the latter three are designed to simulate stochas-
tic work commutes. Furthermore, there are 5 possible
actions, each with a parameter A:

1) Increase a route’s frequency (by A minutes)

2) Decrease a route’s frequency (by A\ minutes)

3) Replace a random stop on a route(with a new stop
within A meters)

4) Add a stop at a random position along on a route
(new stop must be within A meters of the current
stop at that position)

5) Remove a random stop from a route

To ensure that the improved bus networks do not require
more resources or labor than the old bus network, we
add a constraint. We define the total bus-minutes of a
network to be the total amount of time drivers must
spend to complete a single day’s worth of routes. For
example, if one route takes 30 minutes to complete, and
runs 5 times per day, the total bus minutes to complete
that route are 150. We constrain the optimizer to identify
networks that require more than 110% of the existing
network’s bus minutes. We use Q learning with e-greedy



exploration to find the optimal choices of actions and
parameters.

C. Method 2: Route Creation using Q-Learning

In our route creation approach, we represent our bus
route planning problem as a Markov decision problem.
Our approach takes in an existing route, and construct a
new, more equitable route with the same start and end
stops. We sequentially build a route from the starting
bus stop, using Q-Learning and a reward function
motivated by an emphasis on equitable access. We used
the following states, actions, and exploration strategy:

State: The current route [si, S, S3,
and including, the present stop.

Action: Add stop s; to route r, from an array of nearby
stops.*

Exploration Strategy: Epsilon-Greedy (with gradual
decay of epsilon)

O-Learning Update: Q(s,a) + Q(s,a) + « -
Y maxg Q(S/a Cl) - Q(S, a))

s 8i] up to,

(r +

*Note: The array of nearby stops to choose from
was restricted to fall within a 500m to 1000m radius of

by which a criterion was already satisfied, any action
that results in a state where the conditions continue to
be satisfied receives a smaller reward. No meaningful
reward is applied to a state action combination by which
the conditions of a criterion are not met (a baseline
reward is applied to all states to prevent negative values).
Lastly, our reward factored in distance to the end stop,
incentivizing our algorithm to choose next stops closer
to the end destination by subtracting this distance from
the reward.

III. RESULTS

A. Results: In-Place Modification

TABLE II
IN-PLACE MODIFICATION RESULTS

; o ’ . 2*City Avg Time (min) and Total Bus Minutes (% change)
the current stop, in addl.tlon.to being restricted to nearby Original Avg Time  Tmproved Avg Time  Bus Minutes
stops that were closer in distance to the end stop than
the current stop, as a constraint for the action space Atlanta 158 117 (-35%) +0-4%
P pace. San Francisco 116 81 (-43%) +0.2%
Cleveland 128 86 (-32%) +9.5%
Reward Function: Our reward r was defined to New Orleans 87 63 (-38%) +1.3%
Miami 97 61 (-59%) +2.1%

explicitly integrate equity based rewards, taking into
consideration various best practices in equity-driven
transit planning and encoding them into quantitative
rewards. A few standard equity indicators in transit
planning are access to employment, schools, healthy
food, and medical facilities [1]].

In Figures 3 and 4, blue lines represent unchanged
routes, yellow lines represent additions to the route
network, red lines represent subtractions, orange lines
represent routes with increased frequencies, and purple

. . . .. lines represent those with decrease frequencies.
Specifically, » was applied to a state-action pairing based P d

on the following 3 criteria:

(1) whether the route brings bus service access

to a bus dependent area w
(2) whether the route brings the rider access to economic

opportunity (jobs), evaluated by a proxy measure of

having a Mcdonalds or Starbucks near at least one stop
on the route

(3) whether the route allows the rider to access essential
services, evaluated by determining if a hospital or
grocery store is accessible from at least one stop on the e
route.

Bus Plan Comparison

3.0

Latitude

The state is evaluated based on each criterion ke
independently. A large reward is applied for each of the
three criteria that the action satisfies if the previous route
did not previously satisfy these conditions. For routes

Fig. 3. Atlanta Bus Plan Comparison
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V. APPENDIX
A. In Place Modification Results for Various Cities
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IV. CONCLUSION Fig. 13. New Orleans Bus Plan Comparison

In this paper we have explored two different
approaches to optimizing bus routes in major cities using
Q-Learning, both motivated by an equity-oriented reward
function. For our first approach, we modified routes in
place using Q-Learning to optimize adding stops and
changing frequencies of existing routes. For our second
approach, we created routes with the same start and ¢
end as existing routes using Q-Learning to generate an
optimal route. ' i

Scores
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——- best score

~
In contrast to traditional bus route optimization V
methods, we prioritized equity-based metrics in
determining our modified routes. For instance, our model evotn
considered bus stops that would make it easier for a
given passenger to travel to essential destinations, such
as hospitals and grocery stores, catering towards the
needs of the riders who depend on buses the most. As
a result, routes were not chosen simply with the goal
of routing efficiency in mind, like typical approaches; s Minutes
although distance and time were certainly factors, our
reward model would also incentivize detours that would
improve overall accessibility for passengers.

Fig. 14. New Orleans Scores
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